291 research outputs found

    Evaluation of the GenoType® NTM DR for subspecies identification and determination of drug resistance in clinical M. abscessus isolates

    Get PDF
    Introduction: A new line probe assay, the GenoType® NTM DR, has been developed for subspecies identification and detection of resistance to macrolides and aminoglycosides in clinical Mycobacterium abscessus isolates. We studied the performance of the test compared to DNA sequencing and phenotypic drug susceptibility testing (pDST). Methods: 49 clinical M. abscessus isolates collected between 2015 and 2016 were identified to the subspecies level and analysed for erm(41) genotype, rrl and rrs gene mutations by Sanger sequencing. Broth microdilution was performed for pDST of clarithromycin and amikacin. The results were compared to those of the GenoType® NTM DR assay. Discordant results were further analysed by repeat pDST and whole genome sequencing (WGS). Results: 35 isolates were identified as M. abscessus subsp. abscessus, 6 as M. abscessus subsp. bolletii, and 8 as M. abscessus subsp. massiliense based on rpoB sequences. Concordance of GenoType® NTM DR results with Sanger sequencing was 92% forsubspecies identification and 100% for erm(41), rrl, and rrs genotypes, respectively. GenoType® NTM DR and pDST results matched in 98% for clarithromycin resistance and in 96% for amikacin resistance when repeat pDST results were taken into account. Conclusion: The new GenoType® NTM DR assay is a valuable test for subspecies identification of M. abscessus isolates and detection of defined mutations conferring resistance to amikacin and clarithromycin. Discrepancies between the line probe assay and pDST mainly relate to variations in phenotypic test results

    Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study

    Get PDF
    Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specificity (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workflows, phasing out phenotypic drug-susceptibility testing while reporting drug resistance early

    Cardiac electrophysiological effects of light-activated chloride channels

    Get PDF
    During the last decade, optogenetics has emerged as a paradigm-shifting technique to monitor and steer the behavior of specific cell types in excitable tissues, including the heart. Activation of cation-conducting channelrhodopsins (ChR) leads to membrane depolarization, allowing one to effectively trigger action potentials (AP) in cardiomyocytes. In contrast, the quest for optogenetic tools for hyperpolarization-induced inhibition of AP generation has remained challenging. The green-light activated ChR from Guillardia theta (GtACR1) mediates Cl−-driven photocurrents that have been shown to silence AP generation in different types of neurons. It has been suggested, therefore, to be a suitable tool for inhibition of cardiomyocyte activity. Using single-cell electrophysiological recordings and contraction tracking, as well as intracellular microelectrode recordings and in vivo optical recordings of whole hearts, we find that GtACR1 activation by prolonged illumination arrests cardiac cells in a depolarized state, thus inhibiting re-excitation. In line with this, GtACR1 activation by transient light pulses elicits AP in rabbit isolated cardiomyocytes and in spontaneously beating intact hearts of zebrafish. Our results show that GtACR1 inhibition of AP generation is caused by cell depolarization. While this does not address the need for optogenetic silencing through physiological means (i.e., hyperpolarization), GtACR1 is a potentially attractive tool for activating cardiomyocytes by transient light-induced depolarization

    Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with Mykrobe [version 1; peer review: 2 approved, 1 approved with reservations]

    Get PDF
    Two billion people are infected with Mycobacterium tuberculosis, leading to 10 million new cases of active tuberculosis and 1.5 million deaths annually. Universal access to drug susceptibility testing (DST) has become a World Health Organization priority. We previously developed a software tool, Mykrobe predictor, which provided offline species identification and drug resistance predictions for M. tuberculosis from whole genome sequencing (WGS) data. Performance was insufficient to support the use of WGS as an alternative to conventional phenotype-based DST, due to mutation catalogue limitations. Here we present a new tool, Mykrobe, which provides the same functionality based on a new software implementation. Improvements include i) an updated mutation catalogue giving greater sensitivity to detect pyrazinamide resistance, ii) support for user-defined resistance catalogues, iii) improved identification of non-tuberculous mycobacterial species, and iv) an updated statistical model for Oxford Nanopore Technologies sequencing data. Mykrobe is released under MIT license at https://github.com/mykrobe-tools/mykrobe. We incorporate mutation catalogues from the CRyPTIC consortium et al. (2018) and from Walker et al. (2015), and make improvements based on performance on an initial set of 3206 and an independent set of 5845 M. tuberculosis Illumina sequences. To give estimates of error rates, we use a prospectively collected dataset of 4362 M. tuberculosis isolates. Using culture based DST as the reference, we estimate Mykrobe to be 100%, 95%, 82%, 99% sensitive and 99%, 100%, 99%, 99% specific for rifampicin, isoniazid, pyrazinamide and ethambutol resistance prediction respectively. We benchmark against four other tools on 10207 (=5845+4362) samples, and also show that Mykrobe gives concordant results with nanopore data. We measure the ability of Mykrobe-based DST to guide personalized therapeutic regimen design in the context of complex drug susceptibility profiles, showing 94% concordance of implied regimen with that driven by phenotypic DST, higher than all other benchmarked tools

    Effects of robotic-assisted laparoscopic prostatectomy on surgical pathology specimens

    Get PDF
    Background Robotic-assisted laparoscopic prostatectomy (RALP) has greatly changed clinical management of prostate cancer. It is important for pathologists and urologists to compare RALP with conventional open radical retropubic prostatectomy (RRP), and evaluate their effects on surgical pathology specimens. Methods We retrospectively reviewed and statistically analyzed 262 consecutive RALP (n = 182) and RRP (n = 80) procedures performed in our institution from 2007 to 2010. From these, 49 RALP and 33 RRP cases were randomly selected for additional microscopic examination to analyze the degree of capsular incision and the amount of residual prostate surface adipose tissue. Results Positive surgical margins were present in 28.6% RALP and 57.5% RRP cases, a statistically significant difference. In patients with stage T2c tumors, which represent 61.2% RALP and 63.8% RRP patients, the positive surgical margin rate was 24.1% in the RALP group and 58.8% in the RRP group (statistically significant difference). For other pathologic stages, the differences in positive margins between RALP and RRP groups were not statistically significant. The incidence of positive surgical margins after RALP was related to higher tumor stage, higher Gleason score, higher tumor volume and lower prostate weight, but was not related to the surgeons performing the procedure. When compared with RRP, RALP also caused less severe prostatic capsular incision and maintained larger amounts of residual surface adipose tissue in prostatectomy specimens. Conclusions In this study RALP showed a statistically significant lower positive surgical margin rate than RRP. Analysis of capsular incision and amount of prostatic surface residual adipose tissue suggested that RALP caused less prostatic capsular damage than RRP

    Scaling up community mobilisation through women's groups for maternal and neonatal health: experiences from rural Bangladesh

    Get PDF
    Background: Program coverage is likely to be an important determinant of the effectiveness of community interventions to reduce neonatal mortality. Rigorous examination and documentation of methods to scale-up interventions and measure coverage are scarce, however. To address this knowledge gap, this paper describes the process and measurement of scaling-up coverage of a community mobilisation intervention for maternal, child and neonatal health in rural Bangladesh and critiques this real-life experience in relation to available literature on scaling-up.Methods: Scale-up activities took place in nine unions in rural Bangladesh. Recruitment and training of those who deliver the intervention, communication and engagement with the community and other stakeholders and active dissemination of intervention activities are described. Process evaluation and population survey data are presented and used to measure coverage and the success of scale-up.Results: The intervention was scaled-up from 162 women's groups to 810, representing a five-fold increase in population coverage. The proportion of women of reproductive age and pregnant women who were engaged in the intervention increased from 9% and 3%, respectively, to 23% and 29%.Conclusions: Examination and documentation of how scaling-up was successfully initiated, led, managed and monitored in rural Bangladesh provide a deeper knowledge base and valuable lessons.Strong operational capabilities and institutional knowledge o

    Bunyavirus requirement for endosomal K+ reveals new roles of cellular ion channels during infection

    Get PDF
    In order to multiply and cause disease a virus must transport its genome from outside the cell into the cytosol, most commonly achieved through the endocytic network. Endosomes transport virus particles to specific cellular destinations and viruses exploit the changing environment of maturing endocytic vesicles as triggers to mediate genome release. Previously we demonstrated that several bunyaviruses, which comprise the largest family of negative sense RNA viruses, require the activity of cellular potassium (K+) channels to cause productive infection. Specifically, we demonstrated a surprising role for K+ channels during virus endosomal trafficking. In this study, we have used the prototype bunyavirus, Bunyamwera virus (BUNV), as a tool to understand why K+ channels are required for progression of these viruses through the endocytic network. We report three major findings: First, the production of a dual fluorescently labelled bunyavirus to visualize virus trafficking in live cells. Second, we show that BUNV traffics through endosomes containing high [K+] and that these K+ ions influence the infectivity of virions. Third, we show that K+ channel inhibition can alter the distribution of K+ across the endosomal system and arrest virus trafficking in endosomes. These data suggest high endosomal [K+] is a critical cue that is required for virus infection, and is controlled by cellular K+ channels resident within the endosome network. This highlights cellular K+ channels as druggable targets to impede virus entry, infection and disease

    Catalytic Water Co-Existing with a Product Peptide in the Active Site of HIV-1 Protease Revealed by X-Ray Structure Analysis

    Get PDF
    BACKGROUND: It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. PRINCIPAL FINDINGS: We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. CONCLUSIONS/SIGNIFICANCE: The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated

    Modeling the heart

    Get PDF
    Quantitative prediction over multiple space and time scales using computer models of the electrical activity in the mammalian heart, based on membrane and intracellular ion transport and binding dynamics, digital histology, and three-dimensional cardiac anatomy and architecture
    corecore